Marine hydrocarbonoclastic bacteria as whole-cell biosensors for n-alkanes
نویسندگان
چکیده
Whole-cell biosensors offer potentially useful, cost-effective systems for the in-situ monitoring of seawater for hydrocarbons derived from accidental spills. The present work compares the performance of a biosensor system for the detection of alkanes in seawater, hosted in either Escherichia coli (commonly employed in whole-cell biosensors but not optimized for alkane assimilation) or different marine bacteria specialized in assimilating alkanes. The sensor system was based on the Pseudomonas putida AlkS regulatory protein and the PalkB promoter fused to a gene encoding the green fluorescent protein. While the E. coli sensor provided the fastest response to pure alkanes (25-fold induction after 2 h under the conditions used), a sensor based on Alcanivorax borkumensis was slower, requiring 3-4 h to reach similar induction values. However, the A. borkumensis sensor showed a fourfold lower detection threshold for octane (0.5 μM), and was also better at sensing the alkanes present in petrol. At petrol concentrations of 0.0125%, the A. borkumensis sensor rendered a sevenfold induction, while E. coli sensor showed no response. We discuss possible explanations to this behaviour in terms of the cellular adaptations to alkane uptake and the basal fluorescence produced by each bacterial strain, which was lowest for A. borkumensis.
منابع مشابه
Characterization of hydrocarbonoclastic marine acteria using the 16S rRNA gene: A microcosm case study
Some marine microorganisms can degrade oil pollutants by using them as their sole carbon and energy sources. Members of this heterogenic group are called hydrocarbonoclastic bacteria. However, an unestimated number of hydrocarbonoclastic marine bacteria have not yet been characterized. In this context, a microcosm study was carried out, simulating a marine environment contaminated with oil in U...
متن کاملAnaerobic degradation of cyclohexane by sulfate-reducing bacteria from hydrocarbon-contaminated marine sediments
The fate of cyclohexane, often used as a model compound for the biodegradation of cyclic alkanes due to its abundance in crude oils, in anoxic marine sediments has been poorly investigated. In the present study, we obtained an enrichment culture of cyclohexane-degrading sulfate-reducing bacteria from hydrocarbon-contaminated intertidal marine sediments. Microscopic analyses showed an apparent d...
متن کاملMicrobial Biosensor for Marine Environments
A biosensor is an analytical device which integrates a biological recognition element with a physical transducer to generate a measurable signal proportional to the concentration of the analyses. A microbial biosensor consists of a transducer in conjunction with immobilized viable or non-viable microbial cells. Non-viable cells obtained after Permeable or whole cells containing periplasmic enzy...
متن کاملHydrophobicity effect on oil degradation by two marine bacterial strains Alcanivorax borkumensis and Thalassolituus oleivorans
Variations on hydrophobicity were monitored in two marine obligate hydrocarbonoclastic bacteria: Alcanivorax borkumensis SK2T and Thalassolituus oleivoras MIL-1T. These strains were inoculated, separately in ONR7a mineral medium with different concentration of sodium acetate. During 10 days measurements of cellular abundance and cellular hydrophobicity (capacity to adhere at polystyrene) were c...
متن کاملGeneralist hydrocarbon-degrading bacterial communities in the oil-polluted water column of the North Sea
The aim of this work was to determine the effect of light crude oil on bacterial communities during an experimental oil spill in the North Sea and in mesocosms (simulating a heavy, enclosed oil spill), and to isolate and characterize hydrocarbon-degrading bacteria from the water column. No oil-induced changes in bacterial community (3 m below the sea surface) were observed 32 h after the experi...
متن کامل